Apelin-13 protects the heart against ischemia-reperfusion injury through the RISK-GSK-3β-mPTP pathway
نویسندگان
چکیده
INTRODUCTION Apelin plays an important role in the protection against myocardial ischemia-reperfusion (I/R) injury, while the mechanism still remains unclear. In the current study, we aimed to evaluate the protective effect of apelin-13, and the main mechanism. MATERIAL AND METHODS The in vivo I/R injury model (Sprague-Dawley rat) was established, then infarct size, expression levels of phospho-protein kinase B (p-Akt), phospho-extracellular signal-regulated kinase (p-ERK) and phospho-glycogen synthase kinase-3β (p-GSK-3β) were measured. The fluorescence intensity of tetramethylrhodamine ethyl ester perchlorate (TMRE) of the isolated myocardial cells was determined to evaluate the opening of the mitochondrial permeability transition pore (mPTP) caused by oxidant stress and hypoxia/reoxygenation. RESULTS For the established I/R injury model, apelin-13 and SB216763 (GSK-3β inhibitor) significantly reduced the infarct size (p < 0.05), which could be abolished by LY294002 (PI3K inhibitor), PD98059 (MEK inhibitor) and atractyloside (mPTP accelerator). The enhanced expression levels of p-Akt, p-ERK and p-GSK-3β caused by apelin-13 (p < 0.05) could be counteracted by LY294002 and PD98059. The reduced fluorescence intensity of TMRE in the H2O2/apelin-13 and H2O2/SB216763 treated groups was significantly lower (p < 0.05), indicating that apelin-13 and SB216763 could reduce the decline in mitochondrial membrane potential caused by oxidant stress, and the fluorescence intensity in the hypoxia/reoxygenation + apelin-13 group was significantly lower (p < 0.05), which suggested that apelin-13 could inhibit the mitochondrial membrane potential changes induced by hypoxia/reoxygenation. CONCLUSIONS The protective mechanism of apelin-13 might be that inactivation of GSK-3β could inhibit the opening of mPTP by activating PI3K/Akt and ERK1/2 involved in the reperfusion injury salvage kinase (RISK) pathway.
منابع مشابه
Roles of Endoplasmic Reticulum Stress in NECA-Induced Cardioprotection against Ischemia/Reperfusion Injury
Objective This study aimed to investigate whether the nonselective A2 adenosine receptor agonist NECA induces cardioprotection against myocardial ischemia/reperfusion (I/R) injury via glycogen synthase kinase 3β (GSK-3β) and the mitochondrial permeability transition pore (mPTP) through inhibition of endoplasmic reticulum stress (ERS). Methods and Results H9c2 cells were exposed to H2O2 for 20...
متن کاملCardioprotection of the aged rat heart by GSK-3beta inhibitor is attenuated: age-related changes in mitochondrial permeability transition pore modulation.
It is well established that inhibition of glycogen synthase kinase (GSK)-3β in the young adult myocardium protects against ischemia-reperfusion (I/R) injury through inhibition of mitochondrial permeability transition pore (mPTP) opening. Here, we investigated age-associated differences in the ability of GSK-3β inhibitor [SB-216763 (SB)] to protect the heart and to modulate mPTP opening during I...
متن کاملDifferential roles of GSK-3β during myocardial ischemia and ischemia/reperfusion.
RATIONALE Inhibition of glycogen synthase kinase-3 (GSK-3) protects the heart during ischemia/reperfusion (I/R), yet the underlying mechanisms of cardioprotection afforded by beta isoform-specific inhibition GSK-3 remain to be elucidated. OBJECTIVE We studied the molecular mechanism mediating the effect of GSK-3β activation/inhibition upon myocardial injury during prolonged ischemia and I/R. ...
متن کاملPlant Natural Product Formononetin Protects Rat Cardiomyocyte H9c2 Cells against Oxygen Glucose Deprivation and Reoxygenation via Inhibiting ROS Formation and Promoting GSK-3β Phosphorylation.
The opening of mitochondrial permeability transition pore (mPTP) is a major cause of cell death in ischemia reperfusion injury. Based on our pilot experiments, plant natural product formononetin enhanced the survival of rat cardiomyocyte H9c2 cells during oxygen glucose deprivation (OGD) and reoxygenation. For mechanistic studies, we focused on two major cellular factors, namely, reactive oxyge...
متن کاملActivation of G protein‐coupled oestrogen receptor 1 at the onset of reperfusion protects the myocardium against ischemia/reperfusion injury by reducing mitochondrial dysfunction and mitophagy
BACKGROUND AND PURPOSE Recent evidence indicates that GPER (G protein-coupled oestrogen receptor 1) mediates acute pre-ischaemic oestrogen-induced protection of the myocardium from ischaemia/reperfusion injury via a signalling cascade that includes PKC translocation, ERK1/2/ GSK-3β phosphorylation and inhibition of the mitochondrial permeability transition pore (mPTP) opening. Here, we investig...
متن کامل